Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(1-Phenylsulfonyl-1H-indol-2-yl)(thiophen-2-yl)methanone

C. KamalaKumar,^a V. Dhayalan,^b A. K. Mohanakrishnan,^b V. Balasubramanian^a and V. Manivannan^c*

^aDepartment of Chemistry, AMET University, Kanathur, Chennai 603 112, India, ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ^cDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India

Correspondence e-mail: crystallography2010@gmail.com, phdguna@gmail.com

Received 28 December 2010; accepted 15 February 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.008 Å; R factor = 0.077; wR factor = 0.245; data-to-parameter ratio = 17.7.

The crystal studied of the title compound, $C_{19}H_{13}NO_3S_2$, was found to be a non-merohedral twin with a domain ratio of 0.877 (3):0.123 (3). There are two independent molecules in the asymmetric unit. The dihedral angles between the mean plane of the indole ring system and the phenylsulfonyl ring are 71.67 (13) and 71.95 $(13)^{\circ}$ in the two molecules while the indole unit and the thiophene ring make dihedral angles of 54.91 (12) and 56.92 $(13)^{\circ}$ in the two molecules. The crystal packing is stabilized by weak $C-H\cdots\pi$ interactions.

Related literature

For biological activity of chromenopyrrole, see: Ma et al. (2001); Zhao et al. (2002); Zhou et al. (2006); Rajeswaran et al. (1999); For related structures, see: Chakkaravarthi et al. (2007); Gunasekaran et al. (2009); Saravanan et al. (2010).

Experimental

Crystal data C19H13NO3S2

 $M_r = 367.42$

Triclinic, P1	
a = 9.3605 (5) Å	
b = 10.8455 (5) Å	
c = 17.5482 (9) Å	
$\alpha = 88.716 \ (3)^{\circ}$	
$\beta = 80.425 \ (2)^{\circ}$	
$\gamma = 71.467 \ (2)^{\circ}$	

Data collection

Bruker Kappa APEXII CCD	36289 measured reflections
diffractometer	8039 independent reflections
Absorption correction: multi-scan	6195 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.040$
$T_{\min} = 0.924, \ T_{\max} = 0.951$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.077$	453 parameters
$wR(F^2) = 0.245$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^{-3}$
8039 reflections	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C20-C25 ring.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$			
$C17-H17\cdots Cg8^{i}$	0.93	2.88	3.693 (6)	147			
Symmetry code: (i) $-x + 1, -y + 1, -z + 1$.							

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT

(Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

CK thanks AMET University management for their kind support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5452).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, 03673.
- Gunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o1856.
- Ma, C., Liu, X., Li, X., Flippen-Anderson, J., Yu, S. & Cook, J. M. (2001). J. Org. Chem. 66, 4525-4542
- Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.
- Saravanan, B., Dhayalan, V., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2010). Acta Cryst. E66, o1509.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zhao, S., Liao, X. & Cook, J. M. (2002). Org. Lett. 4, 687-690.
- Zhou, H., Liao, X., Yin, W., Ma, J. & Cook, J. M. (2006). J. Org. Chem. 71, 251-259.

 $V = 1664.68 (15) \text{ Å}^3$

 $0.35 \times 0.25 \times 0.20$ mm

Mo $K\alpha$ radiation

 $\mu = 0.34 \text{ mm}^{-1}$ T = 295 K

7 - 4

Acta Cryst. (2011). E67, 0741 [doi:10.1107/S1600536811005666]

(1-Phenylsulfonyl-1*H*-indol-2-yl)(thiophen-2-yl)methanone

C. KamalaKumar, V. Dhayalan, A. K. Mohanakrishnan, V. Balasubramanian and V. Manivannan

Comment

Indole derivatives are found to possess anticancer, antimalarial and antihypertensive activities (Ma *et al.*, 2001; Zhou *et al.*, 2006; Zhao *et al.*, 2002). In addition, Indoles have been proved to display high aldose reductase inhibitory activity (Rajeswaran *et al.*, 1999).

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structure(Chakkaravarthi *et al.*, 2007; Gunasekaran *et al.*, 2009; Saravanan *et al.*, 2010). The compound is non-merohedrally twinned, the suggested transformation matrix is (-1 0 0, 0 - 1 0, -0.664 0.110 1). The dihedral angle between the nine membered indole moiety and the thiophene ring is 54.91 (12) ° for molecule (I) and 56.92 (13) ° for molecule (II) respectively. The torsion angles O1-S1-N1-C1 and O2-S1-N1-C8 in molecule (I), O4-S3-N2-C20 and O5-S3-N2-C27 in molecule (II) [-9.8 (4) ° and 27.7 (4) ° for molecule (I), 9.1 (4) ° and -27.2 (4) ° for molecule (II), respectively] indicates the *syn* conformation of the sulfonyl moiety.

The sum of bond angles around N1 and N2 are 358.9 (3) ° and 358.6 (3) ° respectively, indicates the sp^2 hybridization state of atoms N1 and N2. The molecular structure is stabilized by weak intramolecular C—H···O interactions and the crystal packing is stabilized by weak C—H··· π [C17—H17···Cg8(1 - x, 1 - y, 1 - z) distance of 3.693 (6)Å (*Cg*8 is the centroid of the ring defined by the atoms C20—C25)] interactions.

Experimental

To a solution of *N*-(2-Formylphenyl)benzenesulfonamide (0.5 g, 1.91 mmol) in dry CH3CN (20 ml), K2CO3 (0.8 g, 5.79 mmol), 2-bromo-1-(thiophen-2-yl) ethanone (0.5 g, 2.43 mmol) were added. The reaction mixture was stirred at room temperature for 6 h under N2 atmosphere. The solvent was removed and the residue was quenched with ice-water (50 ml), extracted with chloroform (3 x 10 ml) and dried (Na2SO4). Removal of solvent followed by the residue was dissolved in CH3CN (20 ml), Conc.HCl (3 ml) was added. The reaction mixture was then refluxed for 2 h. It was then poured over ice-water (50 ml), extracted with CHCl3 (3 x 10 ml) and dried (Na2SO4). Removal of solvent followed by crystallization from methanol afforded the compound as a colorless crystal.

Refinement

H atoms were positioned geometrically and refined using riding model with C—H = 0.93Å and $U_{iso}(H) = 1.2Ueq(C)$.

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.

(1-Phenylsulfonyl-1*H*-indol-2-yl)(thiophen-2-yl)methanone

Crystal data	
$C_{19}H_{13}NO_3S_2$	Z = 4
$M_r = 367.42$	F(000) = 760
Triclinic, <i>P</i> T	$D_{\rm x} = 1.466 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.3605 (5) Å	Cell parameters from 6464 reflections
b = 10.8455 (5) Å	$\theta = 2.4 - 27.8^{\circ}$
c = 17.5482 (9) Å	$\mu = 0.34 \text{ mm}^{-1}$
$\alpha = 88.716 \ (3)^{\circ}$	T = 295 K
$\beta = 80.425 \ (2)^{\circ}$	Block, colourless
$\gamma = 71.467 \ (2)^{\circ}$	$0.35\times0.25\times0.20~mm$
$V = 1664.68 (15) \text{ Å}^3$	

Data collection

Bruker Kappa APEXII CCD diffractometer	8039 independent reflections
Radiation source: fine-focus sealed tube	6195 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.040$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\text{max}} = 28.0^{\circ}, \ \theta_{\text{min}} = 1.2^{\circ}$
ω and ϕ scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$k = -14 \rightarrow 14$
$T_{\min} = 0.924, \ T_{\max} = 0.951$	<i>l</i> = −23→23
36289 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.077$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.245$	H-atom parameters constrained
<i>S</i> = 1.07	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.092P)^{2} + 4.8598P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

8039 reflections	$(\Delta/\sigma)_{max} < 0.001$
453 parameters	$\Delta\rho_{max} = 0.55 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.4481 (5)	0.1880 (4)	0.3523 (2)	0.0356 (8)
C2	0.3808 (6)	0.3165 (4)	0.3334 (3)	0.0465 (10)
H2	0.4309	0.3781	0.3332	0.056*
C3	0.2370 (6)	0.3476 (5)	0.3150 (3)	0.0538 (12)
Н3	0.1889	0.4326	0.3021	0.065*
C4	0.1597 (6)	0.2562 (5)	0.3149 (3)	0.0565 (13)
H4	0.0614	0.2816	0.3031	0.068*
C5	0.2277 (5)	0.1307 (5)	0.3320 (3)	0.0504 (11)
Н5	0.1768	0.0698	0.3314	0.061*
C6	0.3763 (5)	0.0933 (4)	0.3507 (3)	0.0404 (9)
C7	0.4734 (5)	-0.0266 (4)	0.3714 (3)	0.0431 (10)
H7	0.4527	-0.1051	0.3736	0.052*
C8	0.6014 (5)	-0.0084 (4)	0.3877 (3)	0.0376 (9)
C9	0.7171 (5)	-0.0981 (4)	0.4277 (3)	0.0380 (9)
C10	0.7561 (5)	-0.2365 (4)	0.4090 (2)	0.0366 (8)
C11	0.7462 (5)	-0.2983 (4)	0.3425 (3)	0.0408 (9)
H11	0.7074	-0.2553	0.3003	0.049*
C12	0.8028 (6)	-0.4352 (5)	0.3473 (3)	0.0530 (12)
H12	0.8071	-0.4930	0.3080	0.064*
C13	0.8501 (6)	-0.4731 (5)	0.4156 (3)	0.0561 (13)
H13	0.8880	-0.5597	0.4285	0.067*
C14	0.7289 (5)	0.2305 (4)	0.4700 (3)	0.0383 (9)
C15	0.8555 (5)	0.1793 (5)	0.5050 (3)	0.0493 (11)
H15	0.9434	0.1191	0.4785	0.059*
C16	0.8498 (6)	0.2187 (5)	0.5801 (3)	0.0552 (12)
H16	0.9335	0.1830	0.6049	0.066*
C17	0.7217 (6)	0.3102 (5)	0.6184 (3)	0.0537 (12)
H17	0.7190	0.3373	0.6687	0.064*
C18	0.5971 (6)	0.3618 (5)	0.5823 (3)	0.0493 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H18	0.5104	0.4238	0.6086	0.059*
C19	0.5985 (5)	0.3231 (4)	0.5072 (3)	0.0442 (10)
H19	0.5143	0.3583	0.4828	0.053*
N1	0.5908 (4)	0.1243 (3)	0.3762 (2)	0.0371 (7)
O2	0.8724 (4)	0.0828 (4)	0.3479 (2)	0.0562 (9)
01	0.6943 (5)	0.3007 (4)	0.3310 (2)	0.0583 (9)
O3	0.7730 (4)	-0.0590 (3)	0.4761 (2)	0.0539 (9)
S1	0.73502 (13)	0.18488 (11)	0.37382 (7)	0.0413 (3)
S2	0.83327 (16)	-0.34647 (13)	0.47492 (8)	0.0544 (3)
C20	0.3630 (5)	0.6980 (4)	0.1576 (2)	0.0421 (9)
C21	0.2888 (7)	0.8279 (5)	0.1809 (3)	0.0569 (13)
H21	0.3425	0.8867	0.1815	0.068*
C22	0.1326 (7)	0.8653 (5)	0.2032 (3)	0.0645 (15)
H22	0.0801	0.9519	0.2180	0.077*
C23	0.0509 (6)	0.7792 (6)	0.2043 (3)	0.0642 (15)
H23	-0.0542	0.8078	0.2212	0.077*
C24	0.1237 (6)	0.6514 (6)	0.1808 (3)	0.0575 (13)
H24	0.0684	0.5938	0.1807	0.069*
C25	0.2827 (5)	0.6092 (5)	0.1569 (3)	0.0448 (10)
C26	0.3888 (5)	0.4867 (4)	0.1316 (3)	0.0440 (10)
H26	0.3660	0.4097	0.1281	0.053*
C27	0.5280 (5)	0.5000 (4)	0.1135 (3)	0.0408 (9)
C28	0.6673 (5)	0.4060 (4)	0.0691 (3)	0.0418 (9)
C29	0.6939 (5)	0.2679 (4)	0.0865 (3)	0.0408 (9)
C30	0.6482 (6)	0.2140 (5)	0.1540 (3)	0.0525 (12)
H30	0.5864	0.2620	0.1974	0.063*
C31	0.7070 (8)	0.0763 (6)	0.1495 (4)	0.0739 (17)
H31	0.6879	0.0228	0.1894	0.089*
C32	0.7944 (7)	0.0321 (5)	0.0798 (5)	0.0729 (18)
H32	0.8415	-0.0558	0.0666	0.087*
C33	0.7163 (5)	0.7268 (4)	0.0347 (3)	0.0405 (9)
C34	0.8649 (6)	0.6794 (5)	-0.0023 (3)	0.0543 (12)
H34	0.9382	0.6208	0.0221	0.065*
C35	0.9052 (7)	0.7184 (6)	-0.0750 (4)	0.0673 (15)
H35	1.0055	0.6852	-0.1006	0.081*
C36	0.7982 (8)	0.8063 (6)	-0.1101 (3)	0.0643 (15)
H36	0.8264	0.8334	-0.1594	0.077*
C37	0.6495 (7)	0.8549 (5)	-0.0735 (3)	0.0593 (13)
H37	0.5772	0.9144	-0.0979	0.071*
C38	0.6077 (6)	0.8155 (5)	-0.0007(3)	0.0500 (11)
H38	0.5071	0.8483	0.0245	0.060*
N2	0.5175 (4)	0.6304 (3)	0.1284 (2)	0.0415 (8)
O4	0.6061 (5)	0.8001 (4)	0.1772 (2)	0.0609 (10)
05	0.7862 (4)	0.5782 (4)	0.1510 (2)	0.0586 (9)
06	0.7506 (4)	0.4410 (3)	0.0187 (2)	0.0563 (9)
S3	0.66525 (14)	0.68399 (12)	0.13007 (7)	0.0450 (3)
S4	0.80927 (17)	0.15141 (14)	0.01948 (9)	0.0630 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.038 (2)	0.033 (2)	0.034 (2)	-0.0084 (16)	-0.0079 (16)	0.0043 (15)
C2	0.052 (3)	0.034 (2)	0.048 (3)	-0.0044 (18)	-0.009 (2)	0.0024 (18)
C3	0.054 (3)	0.043 (3)	0.051 (3)	0.004 (2)	-0.012 (2)	0.006 (2)
C4	0.043 (3)	0.065 (3)	0.053 (3)	-0.001 (2)	-0.016 (2)	-0.005 (2)
C5	0.037 (2)	0.055 (3)	0.060 (3)	-0.012 (2)	-0.015 (2)	0.000 (2)
C6	0.038 (2)	0.038 (2)	0.046 (2)	-0.0112 (17)	-0.0076 (17)	-0.0050 (18)
C7	0.043 (2)	0.034 (2)	0.056 (3)	-0.0142 (18)	-0.0142 (19)	0.0015 (19)
C8	0.037 (2)	0.0271 (19)	0.048 (2)	-0.0079 (15)	-0.0099 (17)	0.0018 (16)
С9	0.035 (2)	0.036 (2)	0.042 (2)	-0.0094 (16)	-0.0083 (16)	0.0012 (17)
C10	0.038 (2)	0.0288 (19)	0.043 (2)	-0.0084 (15)	-0.0103 (17)	0.0036 (16)
C11	0.043 (2)	0.030 (2)	0.048 (2)	-0.0081 (17)	-0.0082 (18)	0.0000 (17)
C12	0.053 (3)	0.035 (2)	0.067 (3)	-0.007 (2)	-0.012 (2)	-0.006 (2)
C13	0.051 (3)	0.034 (2)	0.080 (4)	-0.009 (2)	-0.012 (2)	0.013 (2)
C14	0.040 (2)	0.032 (2)	0.046 (2)	-0.0149 (17)	-0.0091 (17)	-0.0033 (17)
C15	0.037 (2)	0.055 (3)	0.057 (3)	-0.0115 (19)	-0.012 (2)	-0.005 (2)
C16	0.053 (3)	0.057 (3)	0.062 (3)	-0.018 (2)	-0.025 (2)	-0.002 (2)
C17	0.067 (3)	0.053 (3)	0.050 (3)	-0.029 (2)	-0.014 (2)	-0.002 (2)
C18	0.048 (3)	0.042 (2)	0.055 (3)	-0.012 (2)	-0.004 (2)	-0.012 (2)
C19	0.038 (2)	0.037 (2)	0.056 (3)	-0.0097 (17)	-0.0105 (19)	-0.0022 (19)
N1	0.0380 (17)	0.0296 (16)	0.046 (2)	-0.0119 (14)	-0.0123 (15)	0.0019 (14)
02	0.0428 (18)	0.064 (2)	0.058 (2)	-0.0176 (16)	0.0042 (15)	-0.0177 (17)
01	0.075 (2)	0.056 (2)	0.059 (2)	-0.0395 (19)	-0.0159 (18)	0.0106 (17)
O3	0.060 (2)	0.0457 (18)	0.059 (2)	-0.0120 (16)	-0.0263 (17)	-0.0055 (15)
S1	0.0414 (6)	0.0411 (6)	0.0455 (6)	-0.0193 (4)	-0.0053 (4)	-0.0028 (4)
S2	0.0567 (7)	0.0483 (7)	0.0547 (7)	-0.0088 (5)	-0.0171 (6)	0.0126 (5)
C20	0.048 (2)	0.040 (2)	0.033 (2)	-0.0095 (18)	0.0001 (17)	0.0041 (17)
C21	0.064 (3)	0.039 (2)	0.055 (3)	-0.009 (2)	0.008 (2)	-0.003 (2)
C22	0.062 (3)	0.045 (3)	0.064 (3)	0.005 (2)	0.010 (3)	0.000 (2)
C23	0.047 (3)	0.063 (3)	0.063 (3)	0.000 (2)	0.009 (2)	0.010 (3)
C24	0.041 (3)	0.064 (3)	0.064 (3)	-0.016 (2)	-0.002 (2)	0.010 (3)
C25	0.042 (2)	0.045 (2)	0.047 (2)	-0.0137 (19)	-0.0083 (19)	0.0121 (19)
C26	0.048 (2)	0.037 (2)	0.047 (2)	-0.0145 (19)	-0.0047 (19)	0.0015 (18)
C27	0.043 (2)	0.036 (2)	0.042 (2)	-0.0111 (17)	-0.0076 (18)	0.0010 (17)
C28	0.040 (2)	0.043 (2)	0.041 (2)	-0.0105 (18)	-0.0063 (17)	-0.0031 (18)
C29	0.040 (2)	0.033 (2)	0.045 (2)	-0.0063 (17)	-0.0058 (17)	-0.0075 (17)
C30	0.061 (3)	0.040 (2)	0.049 (3)	-0.006 (2)	-0.006 (2)	0.001 (2)
C31	0.073 (4)	0.044 (3)	0.097 (5)	-0.010 (3)	-0.012 (3)	0.012 (3)
C32	0.058 (3)	0.039 (3)	0.115 (5)	-0.006 (2)	-0.013 (3)	-0.015 (3)
C33	0.043 (2)	0.040 (2)	0.043 (2)	-0.0207 (18)	-0.0083 (18)	0.0027 (18)
C34	0.043 (2)	0.059 (3)	0.059 (3)	-0.015 (2)	-0.005 (2)	0.001 (2)
C35	0.059 (3)	0.074 (4)	0.067 (4)	-0.027 (3)	0.009 (3)	-0.001 (3)
C36	0.085 (4)	0.066 (4)	0.048 (3)	-0.037 (3)	-0.002 (3)	0.006 (3)
C37	0.071 (4)	0.053 (3)	0.060 (3)	-0.021 (3)	-0.027 (3)	0.016 (2)
C38	0.046 (2)	0.052 (3)	0.054 (3)	-0.016 (2)	-0.011 (2)	0.005 (2)

N2	0.0423 (19)	0.0351 (18)	0.044(2)	-0.0114(15)	0.0004 (15)	-0.0031 (15)
04	0.076(3)	0.0531(10) 0.058(2)	0.044(2)	-0.0302(19)	-0.0089(18)	-0.0104(17)
05	0.070(3)	0.058(2)	0.055(2)	-0.0171(17)	-0.0240(17)	0.0104(17)
05	0.055(2)	0.004(2)	0.001(2)	-0.0133(16)	0.0240(17)	0.0105(10)
S3	0.0491 (6)	0.031(2)	0.034(2)	-0.0193(5)	-0.0107(5)	-0.0013(5)
SJ	0.0491(0)	0.0401(0)	0.0437(0)	-0.0081(6)	0.0107 (5)	-0.0222(7)
54	0.0557 (8)	0.0345 (8)	0.0005 (7)	0.0001 (0)	0.0025 (0)	0.0222 (7)
Geometric param	neters (Å, °)					
C1—C2		1.393 (6)	C20-	C21	1.394	(6)
C1—C6		1.398 (6)	C20-	C25	1.399	(7)
C1—N1		1.423 (5)	C20-	N2	1.410	(6)
C2—C3		1.371 (7)	C21-	C22	1.377	(8)
С2—Н2		0.9300	C21-	—H21	0.9300)
C3—C4		1.401 (8)	C22-	C23	1.381	(9)
С3—Н3		0.9300	C22-	—H22	0.9300)
C4—C5		1.357 (7)	C23-	C24	1.373	(8)
C4—H4		0.9300	C23-	—Н23	0.9300)
С5—С6		1.411 (6)	C24-	C25	1.403	(7)
С5—Н5		0.9300	C24-	-H24	0.9300)
C6—C7		1.409 (6)	C25-	C26	1.410	(6)
С7—С8		1.350 (6)	C26-	C27	1.342	(6)
С7—Н7		0.9300	C26-	-H26	0.9300)
C8—N1		1.422 (5)	C27-	N2	1.414	(6)
С8—С9		1.472 (6)	C27-	C28	1.483	(6)
С9—ОЗ		1.216 (5)	C28-	O6	1.216	(6)
C9—C10		1.458 (6)	C28-	C29	1.472	(6)
C10-C11		1.390 (6)	C29-	C30	1.373	(7)
C10—S2		1.717 (4)	C29-	—S4	1.710	(4)
C11—C12		1.415 (6)	C30-	C31	1.417	(7)
C11—H11		0.9300	C30-	—Н30	0.9300)
C12—C13		1.357 (8)	C31-	C32	1.356	(10)
C12—H12		0.9300	C31-	-H31	0.9300)
C13—S2		1.693 (6)	C32-	—S4	1.678	(7)
C13—H13		0.9300	C32-	—Н32	0.9300)
C14—C15		1.378 (6)	C33-	C34	1.371	(7)
C14—C19		1.382 (6)	C33-	C38	1.381	(7)
C14—S1		1.757 (4)	C33-	—S3	1.757	(5)
C15—C16		1.382 (7)	C34-	C35	1.367	(8)
C15—H15		0.9300	C34-	-H34	0.9300)
C16—C17		1.371 (8)	C35-	C36	1.365	(9)
C16—H16		0.9300	C35-	—Н35	0.9300)
C17—C18		1.375 (7)	C36-	C37	1.372	(9)
С17—Н17		0.9300	C36-	—Н36	0.9300)
C18—C19		1.388 (7)	C37-	C38	1.371	(8)
C18—H18		0.9300	C37-	—Н37	0.9300)
С19—Н19		0.9300	C38-	-H38	0.9300)
N1—S1		1.674 (3)	N2—	-S3	1.666	(4)
O2—S1		1.417 (4)	04—	-S3	1.423	(4)

01—S1	1.427 (4)	05—83	1.424 (4)
C2—C1—C6	122.4 (4)	C21—C20—C25	121.7 (5)
C2—C1—N1	131.5 (4)	C21—C20—N2	131.5 (5)
C6—C1—N1	106.1 (3)	C25-C20-N2	106.8 (4)
C3—C2—C1	116.7 (5)	C22—C21—C20	117.1 (5)
C3—C2—H2	121.7	C22—C21—H21	121.5
C1—C2—H2	121.7	C20—C21—H21	121.5
C2—C3—C4	122.5 (5)	C21—C22—C23	122.4 (5)
С2—С3—Н3	118.7	C21—C22—H22	118.8
С4—С3—Н3	118.7	С23—С22—Н22	118.8
C5—C4—C3	120.2 (5)	C24—C23—C22	120.5 (5)
С5—С4—Н4	119.9	C24—C23—H23	119.8
C3—C4—H4	119.9	С22—С23—Н23	119.8
C4—C5—C6	119.5 (5)	C23—C24—C25	119.0 (5)
С4—С5—Н5	120.2	C23—C24—H24	120.5
С6—С5—Н5	120.2	C25—C24—H24	120.5
C1—C6—C7	109.0 (4)	C20—C25—C24	119.3 (5)
C1—C6—C5	118.6 (4)	C20—C25—C26	108.2 (4)
C7—C6—C5	132.3 (4)	C24—C25—C26	132.5 (5)
C8—C7—C6	108.6 (4)	C27—C26—C25	108.4 (4)
С8—С7—Н7	125.7	С27—С26—Н26	125.8
С6—С7—Н7	125.7	С25—С26—Н26	125.8
C7—C8—N1	108.6 (4)	C26—C27—N2	109.3 (4)
С7—С8—С9	126.8 (4)	C26—C27—C28	127.3 (4)
N1—C8—C9	123.1 (4)	N2—C27—C28	122.2 (4)
O3—C9—C10	121.8 (4)	O6—C28—C29	122.1 (4)
O3—C9—C8	121.5 (4)	O6—C28—C27	121.6 (4)
C10—C9—C8	116.7 (4)	C29—C28—C27	116.2 (4)
C11—C10—C9	129.9 (4)	C30—C29—C28	129.0 (4)
C11—C10—S2	111.6 (3)	C30—C29—S4	111.7 (3)
C9—C10—S2	118.4 (3)	C28—C29—S4	119.1 (3)
C10—C11—C12	111.2 (4)	C29—C30—C31	111.7 (5)
C10-C11-H11	124.4	С29—С30—Н30	124.1
C12—C11—H11	124.4	C31—C30—H30	124.1
C13—C12—C11	112.6 (5)	C32—C31—C30	111.7 (6)
C13—C12—H12	123.7	C32—C31—H31	124.2
C11—C12—H12	123.7	C30—C31—H31	124.2
C12—C13—S2	113.1 (4)	C31—C32—S4	113.5 (4)
С12—С13—Н13	123.5	С31—С32—Н32	123.3
S2—C13—H13	123.5	S4—C32—H32	123.3
C15—C14—C19	121.7 (4)	C34—C33—C38	120.3 (5)
C15—C14—S1	119.8 (4)	C34—C33—S3	120.2 (4)
C19—C14—S1	118.4 (3)	C38—C33—S3	119.3 (4)
C14—C15—C16	119.0 (5)	C35—C34—C33	119.9 (5)
C14—C15—H15	120.5	C35—C34—H34	120.1
C16—C15—H15	120.5	C33—C34—H34	120.1
C17—C16—C15	120.5 (5)	C36—C35—C34	120.0 (5)
C17—C16—H16	119.8	C36—C35—H35	120.0
C15—C16—H16	119.8	С34—С35—Н35	120.0

C16—C17—C18	119.9 (5)	C35—C36—C37	120.6 (5)
C16—C17—H17	120.1	С35—С36—Н36	119.7
С18—С17—Н17	120.1	С37—С36—Н36	119.7
C17—C18—C19	121.1 (5)	C38—C37—C36	119.9 (5)
C17—C18—H18	119.4	С38—С37—Н37	120.1
C19—C18—H18	119.4	С36—С37—Н37	120.1
C14—C19—C18	117.9 (4)	C37—C38—C33	119.4 (5)
С14—С19—Н19	121.1	С37—С38—Н38	120.3
C18—C19—H19	121.1	С33—С38—Н38	120.3
C8—N1—C1	107.6 (3)	C20—N2—C27	107.2 (4)
C8—N1—S1	125.1 (3)	C20—N2—S3	126.1 (3)
C1—N1—S1	126.2 (3)	C27—N2—S3	125.3 (3)
O2—S1—O1	120.2 (2)	O4—S3—O5	119.6 (2)
O2—S1—N1	107.27 (19)	O4—S3—N2	105.7 (2)
O1—S1—N1	105.2 (2)	O5—S3—N2	107.4 (2)
O2—S1—C14	109.9 (2)	O4—S3—C33	108.0 (2)
O1—S1—C14	107.8 (2)	O5—S3—C33	109.9 (2)
N1—S1—C14	105.41 (19)	N2—S3—C33	105.2 (2)
C13—S2—C10	91.4 (2)	C32—S4—C29	91.5 (3)
C6—C1—C2—C3	1.9 (7)	C25—C20—C21—C22	-0.3 (8)
N1—C1—C2—C3	-177.6 (4)	N2-C20-C21-C22	176.6 (5)
C1—C2—C3—C4	0.0 (7)	C20-C21-C22-C23	1.4 (9)
C2—C3—C4—C5	-1.3 (8)	C21—C22—C23—C24	-1.9 (10)
C3—C4—C5—C6	0.7 (8)	C22—C23—C24—C25	1.2 (9)
C2—C1—C6—C7	179.1 (4)	C21—C20—C25—C24	-0.4 (7)
N1-C1-C6-C7	-1.2 (5)	N2-C20-C25-C24	-177.9 (4)
C2—C1—C6—C5	-2.5 (7)	C21—C20—C25—C26	-179.3 (5)
N1—C1—C6—C5	177.2 (4)	N2-C20-C25-C26	3.2 (5)
C4—C5—C6—C1	1.2 (7)	C23—C24—C25—C20	-0.1 (8)
C4—C5—C6—C7	179.1 (5)	C23—C24—C25—C26	178.5 (5)
C1—C6—C7—C8	1.4 (5)	C20-C25-C26-C27	-3.0 (5)
C5—C6—C7—C8	-176.6 (5)	C24—C25—C26—C27	178.3 (5)
C6—C7—C8—N1	-1.1 (5)	C25—C26—C27—N2	1.5 (5)
C6—C7—C8—C9	165.5 (4)	C25—C26—C27—C28	-165.7 (4)
C7—C8—C9—O3	-138.0 (5)	C26—C27—C28—O6	135.6 (5)
N1—C8—C9—O3	26.8 (7)	N2—C27—C28—O6	-30.2 (7)
C7—C8—C9—C10	39.3 (7)	C26—C27—C28—C29	-41.2 (7)
N1—C8—C9—C10	-155.9 (4)	N2-C27-C28-C29	153.0 (4)
O3—C9—C10—C11	-157.1 (5)	O6—C28—C29—C30	155.8 (5)
C8—C9—C10—C11	25.6 (7)	C27—C28—C29—C30	-27.5 (7)
O3—C9—C10—S2	20.2 (6)	O6—C28—C29—S4	-18.3 (6)
C8—C9—C10—S2	-157.1 (3)	C27—C28—C29—S4	158.4 (3)
C9—C10—C11—C12	177.3 (4)	C28—C29—C30—C31	-175.4 (5)
S2—C10—C11—C12	-0.1 (5)	S4—C29—C30—C31	-0.9 (6)
C10—C11—C12—C13	1.1 (6)	C29—C30—C31—C32	0.4 (8)
C11—C12—C13—S2	-1.7 (6)	C30—C31—C32—S4	0.4 (8)
C19—C14—C15—C16	2.0 (7)	C38—C33—C34—C35	-1.1 (8)
S1-C14-C15-C16	178.4 (4)	S3—C33—C34—C35	-176.6 (4)
C14—C15—C16—C17	-1.8 (8)	C33—C34—C35—C36	1.2 (9)

C15—C16—C17—C18	0.9 (8)	C34—C35—C36—C37	-0.8 (9)
C16—C17—C18—C19	-0.1 (8)	C35—C36—C37—C38	0.3 (9)
C15-C14-C19-C18	-1.2 (7)	C36—C37—C38—C33	-0.2 (8)
S1—C14—C19—C18	-177.7 (4)	C34—C33—C38—C37	0.5 (7)
C17—C18—C19—C14	0.3 (7)	S3—C33—C38—C37	176.2 (4)
C7—C8—N1—C1	0.3 (5)	C21-C20-N2-C27	-179.5 (5)
C9—C8—N1—C1	-166.9 (4)	C25—C20—N2—C27	-2.3 (5)
C7—C8—N1—S1	-168.3 (3)	C21—C20—N2—S3	13.4 (7)
C9—C8—N1—S1	24.5 (6)	C25-C20-N2-S3	-169.5 (3)
C2-C1-N1-C8	-179.8 (5)	C26—C27—N2—C20	0.5 (5)
C6—C1—N1—C8	0.6 (5)	C28—C27—N2—C20	168.5 (4)
C2-C1-N1-S1	-11.4 (7)	C26—C27—N2—S3	167.8 (3)
C6—C1—N1—S1	169.0 (3)	C28—C27—N2—S3	-24.2 (6)
C8—N1—S1—O2	27.6 (4)	C20—N2—S3—O4	9.0 (4)
C1—N1—S1—O2	-138.9 (4)	C27—N2—S3—O4	-156.0 (4)
C8—N1—S1—O1	156.7 (4)	C20—N2—S3—O5	137.7 (4)
C1—N1—S1—O1	-9.8 (4)	C27—N2—S3—O5	-27.2 (4)
C8—N1—S1—C14	-89.5 (4)	C20—N2—S3—C33	-105.2 (4)
C1—N1—S1—C14	104.0 (4)	C27—N2—S3—C33	89.9 (4)
C15—C14—S1—O2	7.8 (4)	C34—C33—S3—O4	119.1 (4)
C19—C14—S1—O2	-175.7 (3)	C38—C33—S3—O4	-56.5 (4)
C15-C14-S1-O1	-125.0 (4)	C34—C33—S3—O5	-13.0 (5)
C19-C14-S1-O1	51.6 (4)	C38—C33—S3—O5	171.3 (4)
C15-C14-S1-N1	123.1 (4)	C34—C33—S3—N2	-128.4 (4)
C19—C14—S1—N1	-60.4 (4)	C38—C33—S3—N2	56.0 (4)
C12-C13-S2-C10	1.4 (4)	C31—C32—S4—C29	-0.8 (5)
C11—C10—S2—C13	-0.7 (4)	C30—C29—S4—C32	1.0 (4)
C9—C10—S2—C13	-178.5 (4)	C28—C29—S4—C32	176.1 (4)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C20–C25 ring.				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
С2—Н2…О1	0.93	2.33	2.879 (6)	117
С15—Н15…О2	0.93	2.56	2.932 (6)	104
С21—Н21…О4	0.93	2.33	2.878 (7)	117
С34—Н34…О5	0.93	2.58	2.950 (7)	104
C17—H17····Cg8 ⁱ	0.93	2.88	3.693 (6)	147
Symmetry codes: (i) $-x+1, -y+1, -z+1$.				

